Received 19 May 2006 Accepted 29 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nobuo Okabe,* Yasunori Muranishi and Mamiko Odoko

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.026 wR factor = 0.072Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Malonato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)-palladium(II)

In the title complex, $[Pd(C_3H_2O_4)(C_{12}H_8N_2)]$, the Pd^{II} center has a distorted *cis*-square-planar geometry defined by an *O*,*O'*-bidentate malonate ligand and a chelating 1,10-phenanthroline ligand. The crystal structure is stabilized by intermolecular π - π stacking interactions between pairs of 1,10phenanthroline rings, as well as C-H···O hydrogen bonding.

Comment

Cisplatin, *cis*-diamminedichloroplatinum(II), and carboplatin, cis-diammine(cbdca)platinum(II), where cbdca is 1,1-cyclobutanedicarboxylate, are well known as therapeutic Pt^{II} anticancer drugs. The Pd^{II} analogs of Pt^{II} complexes have also been used as models for Pt^{II} complexes (Rau & van Eldik, 1996). For example, *cis*-diammine(cbdca)palladium(II) (Barnham et al., 1994) is isostructural with carboplatin (Beagley et al., 1985; Neidle et al., 1980). Furthermore, [Pd(byp)(cbdca)], where bpy is 2,2'-bipyridine, has greater cytotoxicity than the Pt^{II} complex against lymphocytic leukemia cells (Mansuri-Torshizi et al., 2001). Thus, many Pd^{II} complexes with aromatic heterocyclic ligands, such as 1,10phenanthroline (phen) and bpy, have been synthesized and examined for their anticancer potential (Liu et al., 1999; Jin & Ranford, 2000; Mansuri-Torshizi et al., 2001; Gao & Liu, 2002; Shehata, 2001). For these reasons, we have synthesized novel Pd^{II} complexes with heterocyclic ligands and analyzed their crystal structures to clarify their coordination modes (Okabe et al., 2003; Muranishi & Okabe, 2004; Odoko et al., 2004; Wang, Mizubayashi et al., 2005; Wang, Okabe et al., 2005). In the present study, the title complex, (I), has been synthesized and its crystal structure determined.

The central Pd^{II} atom in (I) (Fig. 1 and Table 1) displays a distorted *cis*-square-planar geometry, defined by two N atoms of the phen ligand and two O atoms of the malonate ligand. The six-membered chelate ring formed by the malonate has a somewhat flattened boat conformation, which resembles that in the Pd^{II} complex with cbdca (Barnham *et al.*, 1994); the five-membered chelate ring formed by phen is planar.

The bond lengths in (I) are similar to those of $[Pd(cbdca)(phen)]H_2O$ and $[Pd(cbdca)(phen)](H_2O)_2$ [Pd-O = 1.982 (3)-2.005 (4) Å; Pd-N = 1.991 (5)-2.010 (4) Å;

© 2006 International Union of Crystallography

All rights reserved

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Muranishi & Okabe, 2004] and $[Pd(oxalato)(phen)]H_2O$ [Pd-O = 1.986 (3)-2.009 (2) Å; Pd-N = 2.006 (2)-2.007 (2) Å; Odoko*et al.* $, 2004]. Likewise, the O-Pd-O bond angles are similar to those for <math>[Pd(NH_3)_2(cbdca)]$ (90.9°; Barnham *et al.*, 1994; standard uncertainty unavailable), [Pd(ethylenediamine)(cbdca)] [92.69 (7)°; Tercero *et al.*, 2003], $[Pd(cbdca)(phen)]H_2O$ [91.3 (2)°] and $[Pd(cbdca)(phen)]-(H_2O)_2$ [92.6 (1)–92.8 (1)°; Muranishi & Okabe, 2004)], but slightly wider than found in $[Pd(oxal)(phen)]H_2O$ [83.80 (9)–83.3 (7)°; Odoko *et al.*, 2004]. The N-Pd-N bond angle is similar to those in all of the above Pd^{II} complexes with phen, but slightly narrower than found in [Pd(en)(cbdca)] [84.15 (8)°] and $[Pd(NH_3)_2(cbdca)]$ (95.0°; Barnham *et al.*, 1994; standard uncertainty unavailable).

The crystal structure is stabilized by C–H···O hydrogen bonds (Table 2 and Fig. 2) and π - π stacking interactions between phen rings; the distance between the ring centroids of N1/C1–C5 and (N2/C6–C10)ⁱⁱⁱ [symmetry code (iii) –1 + x, y, z] is 3.727 (5) Å.

Experimental

Complex (I) was prepared by reacting phen with $[Pd(CH_3COOH)_2]$ for 15 min at room temperature (molar ratio of 1:1) in dimethylformamide (DMF) solution, followed by the addition of an equimolar amount of malonic acid. This mixture was left to stand at room temperature and pale-yellow prismatic crystals of (I) appeared after a few days.

Crystal data

•	
$[Pd(C_3H_2O_4)(C_{12}H_8N_2)]$	Z = 4
$M_r = 388.67$	$D_x = 2.011 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.825 (2) Å	$\mu = 1.47 \text{ mm}^{-1}$
b = 9.180 (3) Å	T = 296 K
c = 18.087 (2) Å	Prism, yellow
$\beta = 98.86 \ (2)^{\circ}$	$0.20 \times 0.15 \times 0.15 \text{ mm}$
V = 1283.8 (6) Å ³	

Figure 2

The molecular packing in (I). Hydrogen bonds are indicated by dashed lines. H atoms not involved in the interactions shown have been omitted.

Data collection

Rigaku AFC-5R diffractometer	2947 independent reflections
ω –2 θ scans	2419 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.025$
(North et al., 1968)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.964, \ T_{\max} = 1$	3 standard reflections
(expected range = $0.774-0.802$)	every 150 reflections
3355 measured reflections	intensity decay: 1.1%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0347P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 0.8246P]
$wR(F^2) = 0.072$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2947 reflections	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ \AA}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.70 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Pd1-O1	1.987 (2)	Pd1-N1	2.004 (2)
Pd1-O3	1.990 (2)	Pd1-N2	2.012 (3)
O1-Pd1-O3	94.08 (9)	O3-Pd1-N1	173.48 (9)
O1-Pd1-N1	91.60 (9)	O3-Pd1-N2	92.15 (9)
O1-Pd1-N2	173.04 (9)	N1-Pd1-N2	82.01 (10)

Table 2

Hydrogen-bond	geometry ((A, °)).
---------------	------------	--------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C11 - H11 \cdots O2^{i} \\ C12 - H12 \cdots O4^{ii} \end{array}$	0.93 0.93	2.66 2.50	3.514 (4) 3.426 (4)	154 177
Symmetry codes: (i) $r + \frac{1}{2} - v + \frac{1}{2} z - \frac{1}{2}$ (ii) $r + \frac{1}{2} - v - \frac{1}{2} z - \frac{1}{2}$				

H atoms were included in the riding model approximation with C-H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2005) and *CRYSTALS* (Betteridge *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *CrystalStructure*.

References

- Barnham, K. J., Djuran, M. I., Frey, U., Mazid, M. A. & Sadler, P. J. (1994). J. Chem. Soc. Chem. Commun. 65, 65–66.
- Beagley, B., Cruickshank, D. W. J., McAuliffe, C. A., Pritchard, R. G., Zaki, A. M., Beddoes, R. L., Cernik, R. J. & Mills, O. S. (1985). *J. Mol. Struct.* **130**, 97–102.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Gao, E. J. & Liu, Q. T. (2002). Huaxue Xuebao, 60, 674-680. (In Chinese.)
- Jin, V. X. & Ranford, J. D. (2000). Inorg. Chim. Acta, 304, 38-44.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liu, X., Gao, E. J., Yang, C. Y. & Luo, D. F. (1999). Shenyang Huagong Xueyuan Xuebao, 13, 168–171. (In Chinese.)
- Mansuri-Torshizi, H., Ghadimy, S. & Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517–1520.
- Muranishi, Y. & Okabe, N. (2004). Acta Cryst. C60, m47-m50.

- Neidle, S., Ismail, I. M. & Sadler, P. J. (1980). J. Inorg. Biochem. 13, 205–212.North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Odoko, M., Wang, Y. & Okabe, N. (2004). Acta Cryst. E60, m1825-m1827.
- Okabe, N., Muranishi, Y. & Aziyama, T. (2003). Acta Cryst. E**59**, m936–m938. Rau, T. & van Eldik, R. (1996). Metal Ions in Biological Systems, Vol. 32,
- edited by A. Sigel & M. Sige, pp. 339–378l. New York: Marcel Dekker. Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Akishima, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
- Shehata, M. (2001). Transition Met. Chem. 26, 198-204.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tercero, J. M., Matilla, A., Sanjuan, M. A., Moreno, C. F., Martin, J. D. & Walmsley, J. A. (2003). *Inorg. Chim. Acta*, 342, 77–87.
- Wang, Y., Mizubayashi, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m67–m70.
- Wang, Y., Okabe, N. & Odoko, M. (2005). Chem. Pharm. Bull. 53, 1291-1295.