Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Nobuo Okabe,* Yasunori Muranishi and Mamiko Odoko

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.026$
$w R$ factor $=0.072$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Malonato- $\left.\kappa^{2} O, O^{\prime}\right)\left(1,10-\right.$ phenanthroline $\left.-\kappa^{2} N, N^{\prime}\right)$ palladium(II)

In the title complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ center has a distorted cis-square-planar geometry defined by an O, O^{\prime}-bidentate malonate ligand and a chelating 1,10 -phenanthroline ligand. The crystal structure is stabilized by intermolecular $\pi-\pi$ stacking interactions between pairs of $1,10-$ phenanthroline rings, as well as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

Cisplatin, cis-diamminedichloroplatinum(II), and carboplatin, cis-diammine(cbdca)platinum(II), where cbdca is 1,1 -cyclobutanedicarboxylate, are well known as therapeutic $\mathrm{Pt}^{\mathrm{II}}$ anticancer drugs. The $\mathrm{Pd}^{\mathrm{II}}$ analogs of $\mathrm{Pt}^{\mathrm{II}}$ complexes have also been used as models for $\mathrm{Pt}^{\mathrm{II}}$ complexes (Rau \& van Eldik, 1996). For example, cis-diammine(cbdca)palladium(II) (Barnham et al., 1994) is isostructural with carboplatin (Beagley et al., 1985; Neidle et al., 1980). Furthermore, [$\mathrm{Pd}($ byp $)$ (cbdca)], where bpy is $2,2^{\prime}$-bipyridine, has greater cytotoxicity than the $\mathrm{Pt}^{\mathrm{II}}$ complex against lymphocytic leukemia cells (Mansuri-Torshizi et al., 2001). Thus, many Pd ${ }^{\text {II }}$ complexes with aromatic heterocyclic ligands, such as $1,10-$ phenanthroline (phen) and bpy, have been synthesized and examined for their anticancer potential (Liu et al., 1999; Jin \& Ranford, 2000; Mansuri-Torshizi et al., 2001; Gao \& Liu, 2002; Shehata, 2001). For these reasons, we have synthesized novel $\mathrm{Pd}^{\mathrm{II}}$ complexes with heterocyclic ligands and analyzed their crystal structures to clarify their coordination modes (Okabe et al., 2003; Muranishi \& Okabe, 2004; Odoko et al., 2004; Wang, Mizubayashi et al., 2005; Wang, Okabe et al., 2005). In the present study, the title complex, (I), has been synthesized and its crystal structure determined.

(I)

The central $\mathrm{Pd}^{\mathrm{II}}$ atom in (I) (Fig. 1 and Table 1) displays a distorted cis-square-planar geometry, defined by two N atoms of the phen ligand and two O atoms of the malonate ligand. The six-membered chelate ring formed by the malonate has a somewhat flattened boat conformation, which resembles that in the $\mathrm{Pd}^{\mathrm{II}}$ complex with cbdca (Barnham et al., 1994); the fivemembered chelate ring formed by phen is planar.

The bond lengths in (I) are similar to those of $[\mathrm{Pd}($ cbdca $)($ phen $)] \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ cbdca $)($ phen $)]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}[\mathrm{Pd}-$ $\mathrm{O}=1.982$ (3)-2.005 (4) \AA; $\mathrm{Pd}-\mathrm{N}=1.991$ (5)-2.010 (4) \AA;

Figure 1
The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Muranishi \& Okabe, 2004] and $[\mathrm{Pd}($ oxalato $)($ phen $)] \mathrm{H}_{2} \mathrm{O}$ $[\mathrm{Pd}-\mathrm{O}=1.986(3)-2.009(2) \AA ; \quad \mathrm{Pd}-\mathrm{N}=2.006(2)-$ 2.007 (2) \AA; Odoko et al., 2004]. Likewise, the $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ bond angles are similar to those for $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{cbdca})\right]\left(90.9^{\circ}\right.$; Barnham et al., 1994; standard uncertainty unavailable), [Pd(ethylenediamine)(cbdca)] [92.69 (7) ${ }^{\circ}$; Tercero et al., 2003], $[\mathrm{Pd}($ cbdca $)($ phen $)] \mathrm{H}_{2} \mathrm{O} \quad\left[91.3(2)^{\circ}\right]$ and $[\mathrm{Pd}($ cbdca $)($ phen $)]-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ [92.6 (1)-92.8 (1) ${ }^{\circ}$; Muranishi \& Okabe, 2004)], but slightly wider than found in $[\mathrm{Pd}($ oxal $)($ phen $)] \mathrm{H}_{2} \mathrm{O}[83.80$ (9)83.3 (7) ${ }^{\circ}$; Odoko et al., 2004]. The $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ bond angle is similar to those in all of the above $\mathrm{Pd}^{\mathrm{II}}$ complexes with phen, but slightly narrower than found in $[\mathrm{Pd}(\mathrm{en})(\mathrm{cbdca})]$ [84.15 (8) ${ }^{\circ}$] and $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\right.$ (cbdca)] (95.0 ${ }^{\circ}$; Barnham et al., 1994; standard uncertainty unavailable).

The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2) and $\pi-\pi$ stacking interactions between phen rings; the distance between the ring centroids of $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ and ($\mathrm{N} 2 / \mathrm{C} 6-\mathrm{C} 10)^{\text {iii }}$ [symmetry code (iii) $-1+x, y$, $z]$ is 3.727 (5) \AA.

Experimental

Complex (I) was prepared by reacting phen with $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right]$ for 15 min at room temperature (molar ratio of 1:1) in dimethylformamide (DMF) solution, followed by the addition of an equimolar amount of malonic acid. This mixture was left to stand at room temperature and pale-yellow prismatic crystals of (I) appeared after a few days.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$	$Z=4$
$M_{r}=388.67$	$D_{x}=2.011 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=7.825(2) \AA$	$\mu=1.47 \mathrm{~mm}^{-1}$
$b=9.180(3) \AA$	$T=296 \mathrm{~K}$
$c=18.087(2) \AA$	Prism, yellow
$\beta=98.86(2)^{\circ}$	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$
$V=12838(6) \AA^{3}$	

Figure 2
The molecular packing in (I). Hydrogen bonds are indicated by dashed lines. H atoms not involved in the interactions shown have been omitted.

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.964, T_{\text {max }}=1$
(expected range $=0.774-0.802)$
3355 measured reflections
2947 independent reflections
2419 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections every 150 reflections intensity decay: 1.1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0347 P)^{2}\right. \\
& \quad+0.8246 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

Pd1-O1	$1.987(2)$	Pd1-N1	$2.004(2)$
Pd1-O3	$1.990(2)$	Pd1-N2	$2.012(3)$
O1-Pd1-O3	$94.08(9)$	O3-Pd1-N1	$173.48(9)$
O1-Pd1-N1	$91.60(9)$	O3-Pd1-N2	$92.15(9)$
O1-Pd1-N2	$173.04(9)$	N1-Pd1-N2	$82.01(10)$

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.66	$3.514(4)$	154
$\mathrm{C} 12-\mathrm{H} 12 \cdots 4^{\text {ii }}$	0.93	2.50	$3.426(4)$	177

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$.
H atoms were included in the riding model approximation with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

References

Barnham, K. J., Djuran, M. I., Frey, U., Mazid, M. A. \& Sadler, P. J. (1994). J. Chem. Soc. Chem. Commun. 65, 65-66.
Beagley, B., Cruickshank, D. W. J., McAuliffe, C. A., Pritchard, R. G., Zaki, A. M., Beddoes, R. L., Cernik, R. J. \& Mills, O. S. (1985). J. Mol. Struct. 130, 97-102.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Gao, E. J. \& Liu, Q. T. (2002). Hиахие Xuebao, 60, 674-680. (In Chinese.)
Jin, V. X. \& Ranford, J. D. (2000). Inorg. Chim. Acta, 304, 38-44.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, X., Gao, E. J., Yang, C. Y. \& Luo, D. F. (1999). Shenyang Huagong Xueyuan Xuebao, 13, 168-171. (In Chinese.)
Mansuri-Torshizi, H., Ghadimy, S. \& Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517-1520.
Muranishi, Y. \& Okabe, N. (2004). Acta Cryst. C60, m47-m50.

Neidle, S., Ismail, I. M. \& Sadler, P. J. (1980). J. Inorg. Biochem. 13, 205-212. North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Odoko, M., Wang, Y. \& Okabe, N. (2004). Acta Cryst. E60, m1825-m1827.
Okabe, N., Muranishi, Y. \& Aziyama, T. (2003). Acta Cryst. E59, m936-m938. Rau, T. \& van Eldik, R. (1996). Metal Ions in Biological Systems, Vol. 32, edited by A. Sigel \& M. Sige, pp. 339-3781. New York: Marcel Dekker.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Akishima, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
Shehata, M. (2001). Transition Met. Chem. 26, 198-204.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tercero, J. M., Matilla, A., Sanjuan, M. A., Moreno, C. F., Martin, J. D. \& Walmsley, J. A. (2003). Inorg. Chim. Acta, 342, 77-87.
Wang, Y., Mizubayashi, Y., Odoko, M. \& Okabe, N. (2005). Acta Cryst. C61, m67-m70.
Wang, Y., Okabe, N. \& Odoko, M. (2005). Chem. Pharm. Bull. 53, 1291-1295.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

